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1. Introduction

The evolution of discontinuities in solutions of nonlinear

hyperbolic equations posaessing smooth initial data was first examined

in a simple problem by Riemann L1). His conjecture" concerned the

conditions for a simple wave to develop a discontinuity. Ludford

(2) re-examined this conjecture in the context of the initial value

problem for unsteady isentropic flow of a perfect gas. This unfolding

process, in the hodograph plane, provide, an asymptotic estimate of

the time to breakdotn of the solution. Zabusky [3] employed the

unfolding method to determine an estimate of the time to breakdown

for tChe transverse oucillations of a nonlinear model string. The

work of Lax [4 and Jeffrey (5] also employs the Riemann invariants to

develop comparison theorems which provide upper and lower bounds for

4 the critical time of singularity occurrence. An alternate method,

characterized by its simplicity has been introduced by Ames [6]. Large

classes of quasilinear equations can be obtained by differentiation

I of first order equations. The general solutions of these are also
I

solutions of the corresponding second order equations. These solutions

display a critical time of singularity occurrence.
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This critical time analysis is applied herein to nonlinear wave

equations which result from rubber-like materials characterized by

Mooney-Rivlin and Neo-Hookean bodies. The times to discontinuity

evolution from smooth initial data are computed and used to ascertain

the region of validity of the generalized LLgrange series solution.

2. Fundamental Equations

The present investigation pertains to straight bars orwires j
with negligible transverse dimensions and possessing a uniform cross

section of finite area. In agreement with Nowinski [7 J we make the

following additional assumptions:

(1) Transverse inertia during the bar motion is neglected.

(ii) In compression and tension zones the bar does not experience

material instability.

(iii) The material is perfectly elastic and incompressible.

(iv) The bar is subjected to simple uni-directional strain in

the sense that the only identically nonvanishing stress

component is the longitudinal normal stress component which

is uniformly distributed over the cross section.

(v) The effect of strain-rate on the constitutive equations is

neglected and the static stress-strain relations are extended

to the dynamic case,

(vi) The bar is infinitely long so that no reflections of waves

occur and other possible wave interferences are discarded.
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Adopting the Lagrangian formulation let both the material

coordinate X and spatial coordinate x be referred to the same fixed

Cartesian system, one of whose axes coincides with the axis of the

bar. Let Pa and p be the mass densities in the stress free configur-

ation (associated with the X coordinate) and deformed configuration

(associated with x a x (X,t) ). If t is time, a° the normal stress

referred to the undeformed cross section of the rod, and u the particle

displacement, then Cauchy's law of motion becomes (James and Guth L81)

Since + I + U. the stretch (extension ratio)

ax =canbe written as

Ii (2)

Consequently, Eq. (1) becomes

TPI C (3)

or in terms of the stretch,

where

(we assume d. ao/A > ) (5)
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Equations (3) and (4) are special cases of the general forme treated

by Ames [6].

Under the assumption that the strain energy exists the theory of I
finite elastic deformations (Truesdell E81, iqo 42.11) furnishes the

stress-stretch relation

0 =z[ "a+ (6)
3

for an incompressible body in simple extension. Here W is the

elastic strain energy function and for an incompressible material the

strain invariants are

From the experimental results of Rivlin and Saunders (see Truesdell

L81, p.(Q14) experimental data Is well approximated by

where a is a constant and f is an arbitrary function to be obtained.

The expanded form

with c constants, has been employed. Retention of only the linear

term leads to (10)
W = 'k-3 + # U- , 13 > 0

corresponding to the Mooney-ivlin material. If 8,4 we obtain Rivlin's

Neo-Hookean material.

If W takes the general form, Eq. (8), then Eq. (4) becomes

o.'t4 _

V - - - ~ -- ~-.- -



rr

Alternately, we may write

(12)

For the Mooney-Rivlin material Eq, (12) becomes

T : P o WE) ,(3

And for the Neo-Hookean material, Eq. (12) becomes

_(14)

In Eq. (14) 2* has been replaced by £/3 a value which is suggested by

the desireability of obtaining the familiar infinitesimal strain

relation TO=:E from Eq. (6).

From his own theory of finite elasticity Seth [9J obtains the

corresponding equation

+ t'o - (s
P0L*' (15)

which differs fundamentally from Eq. (14).

3. Reduction to First Order Elations

Equation (11) and its specializations are of the general form

given by Eq. (4) while Eqs. (12-15) are of the general form specified

by Eq. (3). As previously observed both are special cases of the general

quasilinear equation

z (16)
*p A u ft~ *

F F F, F,~)
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treated by Ames [63, In that work it is shown that Eq. (16) results if

one calculates r and s derivatives of the general first order equation

and eliminates the crose partial derivative term Ura. quations of

the form
Lt,, IL)1A 0(18)

are obtained if F= FOA.,) and (F/t X In

that case the two equations for become F R ,)F o.

Clearly F :F. t&)t are solutions for F. Upon integrating ro,

we obtain the general solutions

UL4 L ()4, (19)

and

(ALL)L#"4)~] ~(20)

respectively, where H and G are arbitrary.

Alternatively, equations of the form

L,& 02~( U )u 4- 0 (21)

are obtained if F= F(P' q) and (F/,7

(the assumption . /#)" = 96q generates a similar

form with 02appearing). Consequftly, the equations

for F become F ± 6(p) F o . Solutions for r are

F F a(16) :9S and upon integrating FO we obtain

H Li,) f.+ A4,L1,j1 : 0  (22)

and



I
I

4, Calculation of Breakdown "Time"

The finite "time" to the evolution of a discontinuity in u or

higher order derivatives can be calculated from Eqs, (19), (20),F
(22) and (23). For example, from the total r derivative of Eq. (20)

we obtain

Ur WL = - - 1A2A)
A. (24)

which becgmes arbitrarily large when

A (25)

Since the !nitial "time" of this occurrence is usually of most

interost we write

,4 '- V~A, (26)

where the minimum is estimated over the appropriate rane of the

quantities in Eq. (26). (For real problems we are interested in

positive values 4C )" On occasion the generai solutions are

employable in simpler forms. For example, in some problems the

general solution may be used as

instead of Eq. (19). In this case the r derivative becomes

(___) _ U) /t )A (28)

which is unbounded when

and the critical (minim= Itime is

.4 /v ,(29)

AIL
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Similar calculations for the equation (.LA,. - Ca( APt) L,.= 0

can be carried out from Eqs. (22) and (23). A discontinuity in

the first derivative can be discovered by inquiring when the

second derivative becomes unbounded. From Eq. (23) we find
I

- + (30)

and, consequently,

A.,C (31)

5. Lagrange Series Solution

While useful for the determination of breakdown times the

implicit nature of the general solutions (Eqs. (19), (20), (22) and

(23) ) inhibits their use in the determination of the solutions.

Alternately, we can obtain a series solution to the equations raO

which are

LL4  I N m- (32)

in the first case discussed and

LkAVA, traj 0 (33)

in the second case. Lagrange expansions are discussed in various

contexts in Goursat [10], Bellman [113, Banta [12) (for finite

amplitude sound waves) and Ames and Jones [13] (for a Monge-Ampere

equation).

A Lagrange series is now constructed for U., + () 4A It 0

as a typical example of the methodology. Suppose u has a Taylor's

series expansion about s-O,

L4,t) (m) 4(

a ~ U~~1 ,"n



This form is inconvenient since the derivatives are with respect

to s and not r. Replacement of the a derivatives is carried out

by using the differential equation and an inductive scheme due

to Goursat (10, p,4O5] (see also Banta E121). If u, ,

then

Consequently, from Eqs. (314) and (35), for f I

~(A) (A) 4"~~~II(36)

L .

a form which contains only r derivatives of u. If the process of

r differentiation and evaluation at suO are interchangeable the

series takes the form

LL&L~[95 (A))]) V- X - c+ j(37)
where Ifr~o ft~n) ,the "initial" condition. This

series in valid out to the first singularity - that is to the

smallest breakdown value sc

To integrate u + V 0 from Eq. (33) we note that it

becomes

UAI L4, wt, 0.= (38)

upon differentiation with respect to r. With v : u Eq. (38)
r

-- : ]:)(bromes

S(39)

+ or),
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an equation taking the same form previously analyzed. Upon

solving for v, u is recovered by integrating with respect to r.

The Lagrange series, Eq. (37), or its integrated form

describes the waveform in its transition from the smooth initial

form f(r) to the onset of breakdown.

6. ApBlication to Rubberlike Materials

Results of the preceding analyses are applicable to a wide

variety of problems. Herein we will investigate Eq. (4) as it

applies to Mooney-RivlIn materials. For that application Eq. (W)

becomes

+X _- (40)

From Section 3 the first order equations generating Eq. (40) are

obtained by setting Lk 4 t it Zt, X

and 0 = [*F-L[-(0#*.3, ' +

whereupon

If the initial stretch is provided by >(Xo) " (i) then

the general solution of Eqs. (41) become (see Eq. (27))

x= [x ; )(x)tj (42)

If 0 < X0 e. X I the breakdown time can be

calculated from the positive minimum of

........ ..... ( . - .. ...... ..Va. ~ 4 IIZ(96 A)
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which can be emloyed to study the onset of the discontinuity.

Since = the quantites x and u

are recovered by integrations.

I
I
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